
Verifying Optimistic Algorithms Should be Easy
(Position Paper)

Noam Rinetzky Martin T. Vechev Eran Yahav Greta Yorsh
Queen Mary University of London IBM T.J. Watson Research Center

Abstract

In this paper, we call to bridge the gap between what makes highly-concurrent optimistic algorithms work
and current approaches for proving their correctness.

The Problem: Verification of Optimistic Concurrent Algorit hms

Highly-concurrent optimistic algorithms are notoriouslyhard to verify. In particular, verifying that an optimistic
algorithm is linearizable [3] is quite challenging. (See, e.g., [9]). Given a highly-concurrent algorithm, our goal
is to find a proof that captures its designer’s intuition as towhy the algorithm works. We believe that simple and
intuitive proofs can, and should, be obtained by embracing thespirit in which these algorithms are written.

In this paper, we show that the intuition behind many optimistic concurrent algorithm can be naturally cap-
tured using global invariants,1 à la Lamprot [4], of aparticular class: In this class, observations regarding the
local state of a thread are completely separated from observations regarding either the local states of other threads
or the global state.

What Makes Highly-Concurrent Optimistic Algorithms Work? A distinguishing feature of optimistic algo-
rithms is that every thread makes very little assumptions onthe environment in which it operates. A thread can
rely on a structural invariant of the global state, but it cannot rely on local properties of other threads. A thread
operates by checking alocal propertyto establish the validity of an update before it takes place.The local prop-
erty concerns only its local variables and a small fraction of the global shared memory. When the local property
does not hold, indicating that the desired update might leadto a violation of the structural invariant, the thread
has the ability to “rollback” its actions, and restart the operation. This approach allows the thread to maintain
safety under any environment (possibly by sacrificing progress).

A Motivating Example. Fig. 1 shows an optimistic set algorithm. The algorithm is one of the concurrent set
algorithms derived in [10]. The code is instrumented with operations that manipulated the set’s abstract value.
(The instrumentation, written in italics, is explained in Example 3.)

The set is implemented as a sorted singly-linked linked listwith designated sentinelHeadandTail nodes.
TheHeadnode holds the smallest possible key, denoted−∞, and theTail node holds the largest possible key,
denoted∞. For simplicity, we illustrate our approach using only two set operations:add andremove, with
their standard meaning. (We note that, although omitted, wecan handle thecontains operation). Thekey
argument to these operations, supplied by the client, must be strictly larger than−∞ and strictly smaller than∞.

Bothadd andremove use the macroLOCATE to traverse the list and locate an item based on the value of
its key. The list traversal performed byLOCATE is optimistic and is done without any form of synchronization.

1In this paper, we use the term “global invariant” as “global within a the context of the algorithm”, i.e., an invariant concerning the
shared resources used to implement the verified data structure, and not as an invariant concerning the whole state.

1

t y p e d e f s t r u c t E{
i n t key ;
s t r u c t E ∗ nex t ;
boolean marked ;

} E nt r y ;

LOCATE(pred , cu r r , key){
pred := Head
c u r r := Head−>nex t
whi le (cu r r−>key < key){

pred := c u r r
c u r r := cu r r−>nex t

}
}

boolean remove (i n t key) {
E nt r y ∗pred ,∗ cu r r ,∗ r

r e s t a r t r e m o v e :
LOCATE(pred ; c u r r ; key)
atomic{

i f (cu r r−>key == key){
cu r r−>marked := t rue
r := cu r r−>nex t
b := ! pred−>marked
i f ((pred−>nex t == c u r r) && b){

pred−>nex t := r
res := (k∈ Abs)
Abs := Abs\ {k}
assert (res == true)
re tu rn t rue

} e l s e { goto r e s t a r t r e m o v e}
} e l s e { re tu rn f a l s e }

}
}

boolean add (i n t key){
E nt r y ∗pred ,∗ cu r r ,∗ e n t r y

r e s t a r t a d d :
LOCATE(pred ; c u r r ; key)
atomic{

i f (cu r r−>key != key){
e n t r y := new E nt r y (key)
en t r y−>nex t := c u r r
b := ! pred −>marked
i f ((pred−>nex t == c u r r) && b){

res := (k 6∈ Abs)
Abs := Abs∪ {k}
pred−>nex t := e n t r y
assert (res == true)
re tu rn t rue

} e l s e { goto r e s t a r t a d d}
} e l s e { re tu rn f a l s e }

}
}

Figure 1: The (instrumented) code of an optimistic set implemented using atomic sections.

OnceLOCATE finds the position for the desired update, the operation attempts to apply this update atomically.
For simplicity, the update is implemented using an atomic section. Note that as a result, interference can occur
during, and after, the list traversal but not during the update.

Verification Challenges

Interference. One of the main challenges in verifying concurrent programsis the need to reason about inter-
ference. Interference cannot be ignored due to the manipulation of shared resources by different threads. The
challenge is to find a way to reason about interference in a simple, yet useful, way. More specifically, the chal-
lenge is to find a way which allows us to make as coarse assumptions about the environment as possible, while
still being able to successfully prove the desired properties.

Most existing approaches make in their reasoning distinctions about the state that cannot be observed by
the executing threads. We find that as a result of this practice, the proofs become less intuitive and needlessly
complicated. We believe that it is both possible and desirable to avoid making such distinctions in the proofs.

Thread-Local Linearization Points. Current approaches focus on finding a linearization point for every oper-
ation, that is, the point in which the operation “seems to take effect instantaneously”. This point occurs between
the time the operation is invoked and the time the operation terminates. This approach yields quite natural and
simple proofs when the linearization points of an operationare thread-local, i.e., can be determined by the lo-
cal state of the thread performing the operation. (Thread-local linearization points are often referred to asfixed
linearization points). Usually, linearization points of this kind are easy to identify and typically correspond to a
statement in the code of the operation which performs a global update.

Example 1 The linearization points ofsuccessfuladd andremove operations, i.e., operations which return
true, arethread-local: They can be associated with the destructive update ofpred->next.

Thread-Global Linearization Points. The proof of linearizability becomes much more demanding when the
linearization points arethread-global, i.e., can be determined only be examining the local state ofseveral threads
or the shared state. (Thread-global linearization points are often referred to asnon-fixedlinearization points).
This type of linearization points is very common in optimistic concurrent algorithms, especially in operation
which are read only.

2

Example 2 The linearization points ofunsuccessfuladd andremove operations arethread-global.

The need to consider non thread-local properties in order todetermine the linearization point of an opera-
tion is particularly frustrating when we consider the rather simpleatomicobservations and permutations that an
operation can make. Intuitively, in many cases, every atomic mutation done by an operation can be simulated
by anMCAS operation. Thus, although the algorithm manages to fulfill its task correctly using very local and
limited observations, the assertions used in a formal proofrequires much stronger observational power. Indeed,
and perhaps unsurprisingly, all existing approaches forautomatic verificationof linearizability, e.g., [1, 2, 5, 8],
are limited to verifying algorithms with fixed linearization points.

Our Goal: Simple Verification of Optimistic Concurrent Algo rithms

We believe that it is possible to simplify the verification ofoptimistic concurrent algorithms by limiting the ob-
servation in the assertions to a stylized form which separates the thread-local observation from a global invariant
regarding the shared state. (These invariants are a specialcase of the invariants suggested by Lamport [4]). We
suggest to overcome the challenge of verifying operations with thread-global linearization points by using non-
constructive proofs. Specifically,instead of showing the linearization points of every operation which occur in
the concurrent trace, we suggest to only show their existence.

We believe that proofs in the spirit of our approach would be simpler and more intuitive than existing proofs
and easier to automate. We also believe that they will provide better insight into the way that the algorithm works,
thus allowing us to use the proofs as a way to understand the intentions of the algorithm designer.

Stable-by-Construction Global Invariants. We ensure that our assertions are stable under interferenceby
restricting them to have twoseparateparts: athread-local invariant and aglobal invariant. The thread-local
invariant records correlation between local variables of single threads. Specifically, the it is not allowed to relate
the local variables of several threads or to observe any mutable part of the heap. The global invariant correlates
only relationships in the global heap. Specifically, it is not allowed to observe any mutable part of the local state
of threads.

More technically, we require that all assertions pertaining to statements occurringoutsideof an atomic section
be of the formIG ∧ IL. Theglobal assertionIG is a formula over global variables and fields of objects. The local
assertionIL is a formula over the local variables of a thread, its programcounter, andimmutableglobal variables.

The key observation is that assertions that separate globalstate from thread-local states are stable under
interference. That is, the (determined) effect of executing the operations concurrently is the same as executing
each one by itself.

Example 3 The following properties are expressible in the restrictedform that we define and hold for the running
example. We useAbs to denote the set’s abstract value. The latter is represented by the set of keys in the nodes
which are reachable from the head of the list. (I.e.,Abs can be determined by a function from the current global
state. See propertyϕ6).

ϕ1

def
= ∀v.n∗(v, T) every node reaches tail

ϕ2

def
= ∀v.¬n+(v, v) acyclic

ϕ3

def
= ∀k ∈ Keys.H.k < k < T.k head and tail keys

ϕ4

def
= ∀v.¬v.m ⇒ n∗(H, v) fumble

ϕ5

def
= ∀v1, v2.(v1.n = v2) ⇒ v1.k < v2.k sorted

ϕ6

def
= ∀k.(k ∈ Abs) ⇐⇒ (∃v.n∗(H, v) ∧ v.k = k) representation

3

Discussion. Verification using our restricted form of invariants can be related to the works Lamport [4], Owicki-
Gries method [6], Reynholds [7]: Following Lamport, we advocate using global invariants. However, our ap-
proach can also be viewed as a special (and simple) case of theOwicki-Gries method [6] in which interference-
freedom is guaranteed by the special form of the invariants:The global part is (by construction) stable under
interference. The local part is also stable under interference, as one thread cannot modify (or even observe) the
local variables of another thread. (Specifically,the soundness proof of our approach uses Owicki-Gries method [6]
to show the absence of interference.) In addition, our restrictions on the form of the assertions can be viewed as
a way to enforce a syntactic control of interference [7].

The Road Ahead

We believe that our approach can be used to verify an entire family of optimistic concurrent algorithms, using no
more than the small set of invariants shown in Example 3, witha few minor adaptations. In the near future, we
plan to put this belief to the test. We note that if our belief is found to be correct, then our approach would have
an additional benefit by revealing hidden commonalities between different algorithms. We have aproof sketch
for the correctness of our approach, and we plan to complete it to produce a formal proof.

Our longer term goals are (i) extend the approach to handle progress properties and (ii) use our approach as a
basis for an automatic verification tool.

Acknowledgements. We are grateful for the encouragement and insights we gainedfrom fruitful discussions
with Peter O’Hearn.

References
[1] A MIT, D., RINETZKY, N., REPS, T. W., SAGIV, M., AND YAHAV, E. Comparison under abstraction for verifying linearizability.

In Computer Aided Verification(2007), pp. 477–490.

[2] BERDINE, J., LEV-AMI , T., MANEVICH , R., RAMALINGAM , G., AND SAGIV, S. Thread quantification for concurrent shape
analysis. InComputer Aided Verification(2008), pp. 399–413.

[3] HERLIHY, M. P.,AND WING, J. M. Linearizability: a correctness condition for concurrent objects.Transactions on Programming
Languages and Systems 12, 3 (1990).

[4] L AMPORT, L. Proving the correctness of multiprocess programs.IEEE Transactions on Software Engineering 3, 2 (1977), 125–143.

[5] M ANEVICH , R., LEV-AMI , T., SAGIV, M., RAMALINGAM , G., AND BERDINE, J. Heap decomposition for concurrent shape
analysis. InStatic Analysis Symposium(2008), pp. 363–377.

[6] OWICKI , S.,AND GRIES, D. Verifying properties of parallel programs: an axiomatic approach.Communications of the ACM 19,
5 (1976), 279–285.

[7] REYNOLDS, J. C. Syntactic control of interference. InACM Principles of Programming Languages(1978), pp. 39–46.

[8] VAFEIADIS, V. Shape-value abstraction for verifying linearizability. In Verification, Model Checking, and Abstract Interpretation
(2009), pp. 335–348.

[9] VAFEIADIS, V., HERLIHY, M., HOARE, T., AND SHAPIRO, M. Proving correctness of highly-concurrent linearisable objects. In
Principles and Practice of Parallel Programming(2006).

[10] VECHEV, M. T., AND YAHAV, E. Deriving fine-grained concurrent linearizable objects. In ACM Programming Languages Design
and Implementation(2008).

4

