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ABSTRACT
A web-crawler is a program that automatically and systematically
tracks the links of a website and extracts information from its pages.
Due to the different formats of websites, the crawling scheme for
different sites can differ dramatically. Manually customizing a crawler
for each specific site is time consuming and error-prone. Further-
more, because sites periodically change their format and presenta-
tion, crawling schemes have to be manually updated and adjusted.
In this paper, we present a technique for automatic synthesis of
web-crawlers from examples. The main idea is to use hand-crafted
(possibly partial) crawlers for some websites as the basis for crawl-
ing other sites that contain the same kind of information. Techni-
cally, we use the data on one site to identify data on another site.
We then use the identified data to learn the website structure and
synthesize an appropriate extraction scheme. We iterate this pro-
cess, as synthesized extraction schemes result in additional data to
be used for re-learning the website structure. We implemented our
approach and automatically synthesized 30 crawlers for websites
from nine different categories: books, TVs, conferences, universi-
ties, cameras, phones, movies, songs, and hotels.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

1 Introduction
A web-crawler is a program that automatically and systematically
tracks the links of a website and extracts information from its pages.
One of the challenges of modern crawlers is to extract complex
structured information from different websites, where the informa-
tion on each site may be represented and rendered in a different
manner and where each data item may have multiple attributes.

For example, price comparison sites use custom crawlers for
gathering information about products and their prices across the
web. These crawlers have to extract the structured information de-
scribing products and their prices from sites with different formats
and representations. The differences between sites often force a
programmer to create a customized crawler for each site, a task
that is time consuming and error-prone. Furthermore, websites
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may eventually change their format and presentation, therefore the
crawling schemes have to be manually maintained and adjusted.

Goal The goal of this work is to automatically synthesize web-
crawlers for a family of websites that contain the same kind of
information but may significantly differ on layout and formatting.
We assume that the programmer provides one or more hand-crafted
web-crawlers for some of the sites in the family, and would like to
automatically generate crawlers for other sites in the family. For ex-
ample, given a family of four websites of online book stores (each
containing tens of thousands of books), and a hand-crafted crawler
for one of them, we automatically generate crawlers for the other
three. Note that our goal is not only to extract data from web-sites,
but to synthesize the programs that extract the data.

Existing Techniques Our work is related to wrapper induction [24].
The goal of wrapper induction is to automatically generate extrac-
tion rules for a website based on the regularity of pages inside
the site. Our main idea is to try and leverage a similar regularity
across multiple sites. However, because different sites may signifi-
cantly differ on their layout, we have to capture this regularity at a
more abstract level. Towards that end, we define an abstract logical
representation of a website that allows us to identify commonality
even in the face of different formatting details.

In contrast to supervised techniques [24, 25, 29, 5], which re-
quire labeled examples, and unsupervised techniques [2, 3, 8, 32,
31, 34, 40] that frequently require manual annotation of the ex-
tracted data, our approach uses cross supervision, where the learned
extraction rules of one site are used to produce labeled examples for
learning the extraction rules in another site.

Our technique uses XPath [7], a widely used web documents
query language along with regular expressions. This makes our
resulting extraction schemes human readable and easy to modify
when needed. There has been some work on the problem of XPath
robustness to site changes [9, 26, 28], trying to pick the most ro-
bust XPath query for extracting a particular piece of information.
While robustness is a desirable property, our ability to efficiently
synthesize a crawler circumvents this challenge as a crawler can be
regenerated whenever a site changes.

Our Approach: Cross-Supervised Learning of Crawling Schemes
We present a technique for automatically synthesizing data-extracting
crawlers. Our technique is based on two observations: (i) sites with
similar content have data overlaps, and (ii) in a given site, infor-
mation with similar semantics is usually located in nodes with a
similar location in the document tree.

Using these observations, we synthesize data-extracting crawlers
for a group of sites sharing the same type of information. Starting
from one or more hand-crafted crawlers which provide a relatively
small initial set of crawled data, we use an iterative approach to
discover data instances in new websites and extrapolate data ex-



traction schemes which are in turn used to extract new data. We
refer to this process as cross-supervised learning, as data from one
web-site is repeatedly used to guide synthesis in other sites.

Our crawlers extract data describing different attributes of items.
We introduce the notion of a container to maintain relationships
between different attributes that refer to the same item. We use con-
tainers, which are automatically selected without any prior knowl-
edge of the structure of the website, to handle pages with multiple
items, and to filter out irrelevant data. This allows us to synthesize
extraction schemes from positive examples only.

Our approach is scalable and practical: we used cross-supervision
to synthesize crawlers for several product review websites, e.g.,
tvexp.com, weppir.com, camexp.com and phonesum.com.

Main Contributions The contributions of this paper are:
• A framework for automatic synthesis of web-crawlers. The

main idea is to use hand-crafted crawlers for a number of
websites as the basis for crawling other sites that contain the
same kind of information.
• A new cross-supervised crawler synthesis algorithm that ex-

trapolates crawling schemes from one web-site to another.
The algorithm handles pages with multiple items and syn-
thesizes crawlers using only positive examples.
• An implementation and evaluation of our approach, automat-

ically synthesizing 30 crawlers for websites from nine differ-
ent categories: books, TVs, conferences, universities, cam-
eras, phones, movies, songs and hotels. The crawlers that
we synthesize are real crawlers that were used to crawl more
than 12, 000 webpages over all categories.

2 Overview
2.1 Motivating Example

Consider a price comparison service for books, which crawls book
seller websites and provides a list of sellers and corresponding
prices for each book. Examples of such book seller sites in-
clude barnesandnoble.com (B&N), blackwell.co.uk (BLACKWELL) and
abebooks.com (ABE). Each of these sites lists a wide collection of
books, typically presented in template generated webpages feeding
from a database. Since these pages are template generated, they
present structured information for each book in a format that is re-
peated across books. By recognizing this repetitive structure for a
given site, one can synthesize a data extraction query and use it to
automatically extract the entire book collection.

While the format within a single site is typically stable, the for-
mats between sites differ considerably. Fig. 1 shows a small and
simplified fragment of the page structure on B&N and BLACKWELL

in HTML. Fig. 3 shows part of the tree representation of the cor-
responding sites (as well as of ABE), where D1, . . . , D4 denote
different pages. Due to the differences in structure, the data ex-
traction query can differ dramatically. For example, in BLACKWELL

and ABE, each of the pages (D2, D3, D4) presents a single book,
whereas in B&N the page D1 shows a list of several books.

The goal of this work is to automatically synthesize crawlers for
new sites based on some existing hand-crafted crawler(s). For ex-
ample, given a crawler for the BLACKWELL site, our technique syn-
thesizes a crawler for B&N website. The synthesized crawler is
depicted in Fig. 2. We show that this can be done despite the signif-
icant differences between the sites BLACKWELL, and B&N, in terms
of HTML structure. We note that the examples that we present in
this section are abbreviated and simplified. For example, the real
DOM tree for the B&N page we show here contains around 1, 000
nodes. The structure of the full trees, and the XPaths required for
processing them are more involved than what is shown here.

barnesandnoble.com
<ol class="result-set box">

<li class="result box">..
<div class="details below-axis" >
<a href="..." data-bntrack="Title_9781628718980"
class="title" >

THROUGH THE LOOKING GLASS</a>
<a href=".."
data-bntrack="Contributor_9781628718980"

class="contributor" >
David Winston Busch</a>
...
<div class="price-format">

<a href="..." data-bntrack="Paperback_Format">
<span class="format">Paperback</span>
<span class="price">$9.91</span>

</a>
</div>
</div>
...</li>
<li class="result box">..
<div class="details below-axis" >
<a href="..." data-bntrack="Title_9780071633604"

class="title">
Alice’s Adventures in Wonderland</a>
<a href=".." data-bntrack="Contributor_9780071633604"
class="contributor" >Lewis Carroll</a>
...
<div class="price-format">
<a href="..." data-bntrack="Paperback_Format">

<span class="format">Paperback</span>
<span class="price">$6.49</span>

</a>
</div>
</div>
...</li>
</ol>

blackwell.com
<div id="product-biblio">
<h1>Through the looking glass</h1>
<a class="link_type1" href="/jsp/a/Lewis_Carroll">
David Winston Busch

</a>
<div class="price-info" align="center">
<span class="price">
£8.99</span>
</div>

</div>

Figure 1: Fragments of webpages with the similar attribute val-
ues for a book on two different book shopping sites.

2.2 Cross-Supervised Learning of Crawling Schemes

Our main observation is that despite the significant differences in
the concrete layout of websites, the pages of websites that exhibit
the same product category often share the same logical structure;
they present similar attributes for each product. For example, each
of the pages of Fig. 1 presents the same important attributes about
the book, including its title, author name and price. Moreover,
there is a large number of shared products between these websites.
The book “Through the looking glass” is one such example for
B&N and BLACKWELL.

Our technique exploits data overlaps across sites in order to learn
the concrete structure of a new website s based on other websites.
Specifically, we identify in s concrete data extracted from other
sites and as such learn the structure in which this data is represented
in s. We then use multiple examples of the structure in which the
data appears in s in order to generalize and get an extraction query
for s. This enables our algorithm to extrapolate a crawler for s.

We do not require a precise match of data across sites, as our
technique also handles noisy data. (For example, prices do not have



1 class MySpider(CrawlSpider):
2 name = "barnesandnoble"
3 allowed_domains = ["www.barnesandnoble.com"]
4 start_urls = [
5 ("http://www.barnesandnoble.com/s/java-programming

?store=allproducts&keyword=java+programming")
6 ]
7
8 rules = (
9 Rule(LinkExtractor(

10 allow=("/s/.*"),callback="parse_item", follow=True
11 ),
12 )
13
14 def parse_item(self, response):
15 sel = Selector(response)
16 rows = sel.XPath(’//body/div/div/section/div/ol["result-set

box"]/li[@class="result box"]/div/div[@class="details
below-axis"]’)

17 for r in rows:
18 item = BooksItem()
19 item[’title’] = r.XPath(
20 ’//a[@class="title"]’
21 ).extract()
22 item[’author’] = r.XPath(
23 ’//a[@class="contributor"]’
24 ).extract()
25 item[’price’] = r.XPath(
26 ’//div[@class="price-format"]/a/span[@class="price"]’
27 ).extract()
28 yield item

Figure 2: Crawler for java books from Barnes&Noble.

to be identical; any number can be a match.)

Crawling schemes A crawler, such as the one of Fig. 2, contains
some boilerplate code defining the crawler class and its operations.
However, the essence of the crawler is its crawling scheme. For
example, in Fig. 2 the crawling scheme is highlighted in boldface.

A crawling scheme is defined with respect to a set of semantic
groups, called attributes, which define the types of data to be ex-
tracted. In the books example, the attributes are: book title, author
and price.

Given a set of attributes, a crawling scheme consists of the fol-
lowing two components: (i) A data extraction query that defines
how to obtain values of the attributes for each item listed on the
site. (ii) A starting point URL and a URL filtering pattern which let
the crawler locate “relevant” pages and filter out irrelevant pages
without downloading and processing them.

Our crawlers use XPath as a query language for data extrac-
tion. XPath is a query language for selecting nodes from an XML
document which is based on the tree representation of the XML
document, and provides the ability to navigate around the tree, se-
lecting nodes by describing their path from the document tree root
node. For example, Fig. 4 and Fig. 5 show the crawling schemes
for crawling books from BLACKWELL and B&N respectively, where
the data extraction query is expressed using XPaths.

Two-level data extraction schemes We assume that the data ex-
traction query has two levels: The first level query is an XPath
describing an item container. Intuitively, a container is a sub-tree
that contains all the attribute values we would like to extract (de-
fined more formally in Sec. 5.) For example, in Fig. 4, the XPath
//body/div[@class="content__maincore-shop"]... de-
scribes a container of book attributes on BLACKWELL pages.

The second level queries contain an extraction XPath for values
of each individual attribute. These XPaths are relative to the root
of the container. For example, //div/h1/ in Fig. 4 is used to pick
the node that has type h1 (heading 1), containing the book title.

Iterative synthesis of crawling schemes Our approach considers a
set of websites, and a set of attributes to extract. To bootstrap the
synthesis process, the user is required to provide the set of websites
for which crawler synthesis is desired, as well as a crawling scheme
for at least one of these sites. Alternatively, the user can provide
multiple partial crawling schemes for different sites, that together
cover all the different item attributes.

The synthesis process starts by invoking the provided extraction
scheme(s) on the corresponding sites to obtain an initial set of val-
ues for each one of the attributes. These values are then used to
locate nodes that contain attribute values in the document trees of
webpages of new sites. The nodes that contain attribute values re-
veal the structure of pages of the corresponding websites. In par-
ticular, smallest subtrees that exhibit all the attributes amount to
containers. This allows for synthesis of data extraction schemes
for new websites. The newly learned extraction schemes are used
to extract more values and add them to the set of values of each
attribute, possibly allowing for additional websites to be handled.
This process is repeated until complete extraction schemes are ob-
tained for all websites, or until no additional values are extracted.

In our example, the algorithm starts with the data extraction scheme
for BLACKWELL (see Fig. 4), provided by a user. It extracts from
D2 author-x, title-x, and price as values of the book title,
author, and price attributes, respectively (see Fig. 3). These values
are identified in D1 (B&N) within the subtree of the left most node
represented by

//body/.../ol["result-set box"]

/li[@class="result box"]/...

/div[@class="details below-axis"],
which then points to the latter node as a possible container. Addi-
tional values taken fromD3 and other pages in BLACKWELL identify
additional nodes in the B&N tree as attribute and container nodes.
Note that author-x is also found in another subtree in D1. How-
ever, there are no instances of the remaining attributes in that sub-
tree; Therefore, the subtree is not considered a container and the
corresponding node is treated as noise.

By identifying the commonality between the identified contain-
ers and between nodes of the same attribute, a data extraction scheme
for B&N is synthesized (see below). In the next iteration, the new
data scheme is used to extract from B&N the values author-z,
title-z and price as additional values for book title, author, and
price respectively (that did not exist in BLACKWELL). The new val-
ues are located in ABE (see D4 in Fig. 3), allowing to learn an
extraction scheme for ABE as well.

XPath synthesis for two-level queries Our approach synthesizes a
two level extraction scheme for each website from a set of attribute
nodes and candidate containers identified in its webpages. The two-
level query structure is reflected also in the synthesis process of the
extraction scheme. Technically, we use a two-phase approach to
synthesize the extraction scheme. In each site, we first generate an
XPath query for the containers. We then filter the attribute nodes
keeping only those reachable from containers that agree with the
container XPath, and generate XPaths for their extraction relatively
to the container nodes.

To generate an XPath query for a set of nodes (e.g., for the set of
containers), we consider the concrete XPath of each node—this is
an XPath that extracts exactly this node. We unify these concrete
XPaths by a greedy algorithm that aims to find the most concrete
(most strict) XPath query that agrees with a majority of the concrete
XPaths. Keeping the unified XPath as concrete as possible prevents
the addition of noise to the extraction scheme.

The generated XPaths for B&N are depicted in Fig. 5. In this
example, unification is trivial since the XPaths are identical. How-
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Figure 3: Example DOM trees

Container: //body/div[@class="content__maincore-shop"]
/table[@class="main-page"]/tr/
td[@class="two-col-right"]/table/tr/td

Title: //div/h1/
Author: //div/a[@class="link_type1"]
Price: //div[@id="buy-options"]/div/span
URL Pattern: .*jsp/id/.*

Figure 4: Crawling scheme for BLACKWELL.

Container: //body/div/div/section/div/ol["result-set box"]
/li[@class="result box"]/div
/div[@class="details below-axis"]

Title: //a[@class="title"]
Author: //a[@class="contributor"]
Price: //div[@class="price-format"]

/a/span[@class="price"]
URL Pattern: /s/.*

Figure 5: Crawling scheme for B&N.

ever, if for example each of the container nodes labeled div in D1

had different id’s, the id feature would have been removed during
unification. Note that even if the subtree that contains the noisy
instance of author-x in D1 had been identified as a candidate
container (e.g., if it had contained values of the other attributes), it
would have been discarded during the unification.

URL pattern synthesis In order to synthesize a URL pattern for the
crawling scheme of a new site, we extend the iterative technique
used for synthesis of data extraction schemes; In each iteration of
the algorithm, for each website we identify a set of pages of interest
as pages that contain attribute data. We filter these pages in accor-
dance with the filtering of container and attribute nodes. We then
unify the URLs of remaining pages similarly to XPath unification.

Fig. 5 depicts the URL pattern generated by our approach for
B&N. This pattern identifies webpages in B&N that present a list of
books—these are the pages whose structure conforms with the syn-
thesized extraction scheme. Note that B&N also presents the same
books in a separate page each, but such pages require a different
crawling scheme.

3 Preliminaries
In this section we define some terms that will later be used to de-
scribe our approach.

3.1 Logical Structure of Webpages
Each webpage implements some logical structure. Following [19],
we use relations as a logical description of data which is indepen-
dent of its concrete representation. A relational specification is a
set of relations, where each relation is defined by a set of column
names and a set of values for the columns. A tuple t = 〈c1 :
d1, c2 : d2, . . .〉 maps a set of columns {c1, c2, . . .} to values. A
relation r is a set of tuples {t1, t2, . . .} such that the columns of
every t, t′ ∈ r are the same.

For example, B&N, BLACKWELL and ABE described in Section 2
implement a relational description of a list of books, where each
book has a title, an author and a price. Then “book title”, “author”
and “price” are columns, and the set of books is modeled as a rela-
tion with these columns, where each tuple is a book item.

Data items, attributes and instances We refer to each tuple of a
relation r as a data item. The columns of a relation r are called at-
tributes, denoted Att. Each attribute defines a class of data sharing
semantic similarities, such as meaning and/or extraction scheme.
The value of attribute a ∈ Att in some tuple of r is also called
an instance of a. The set of all values of all attributes is denoted
V . Each attribute a is associated with an equivalence relation ≡a

that determines if two values are equivalent or not as instances of
a. (The notion of “equivalence” may differ between different at-
tributes.) By default (if not specified by the user) we use the bag
of words representation of each value d, denoted W (d), and use
Jaccard similarity function [21], J(d1, d2), with a threshold of 0.5
as an equivalence indicator between values d1 and d2:

d1 ≡a d2 iff J(d1, d2) > 0.5 where J(d1, d2) =
|W (d1) ∩W (d2)|
|W (d1) ∪W (d2)|

.

3.2 Concrete Layout of Webpages
Technically, webpages are documents with structured data, such as
XML or HTML documents. The concrete layout of the webpage
implements its logical structure, where attribute instances are pre-
sented as nodes in the DOM tree.

XML documents as DOM trees A well formed XML document,
describing a webpage of some website, can be represented by a
DOM tree. A DOM tree is a labeled ordered tree with a set of
nodes N and a labeling function that labels each node with a set
of node features (not to be confused with data attributes), where
some of the features might be unspecified. Common node features
include tag, class and id.



For example, Fig. 3 depicts part of the tree representation of
pages of B&N, BLACKWELL and ABE. A node labeled by a,
class=title is a node whose tag is a, class is title, and id

is unspecified.

Node descriptors A node descriptor is an expression x in some
language defining a set of nodes in the DOM tree. We use Expr to
denote the set of node descriptors. For a node descriptor x ∈ Expr
and a webpage p, we define JxKp to be the set of nodes described
by x from p. When p is clear from the context, we omit it from the
notation. A node descriptor is concrete if it represents exactly one
node. We sometimes also refer to node descriptors as extraction
schemes. In this work, we use XPath as a specification language
for node descriptors.

3.3 XPath as a Data Extraction Language

XPath [7] is a query language for traversing XML documents. XPath
expressions (XPaths in short) are used to select nodes from the
DOM tree representation of an XML document. An XPath expres-
sion is a sequence of instructions, x = x1 . . . xk. Each instruc-
tion xi defines how to obtain the next set of nodes given the set
of nodes selected by the prefix x1 . . . xi−1, where the empty se-
quence selects the root node only. Roughly speaking, each instruc-
tion xi consists of (i) axis defining where to look relatively to the
current nodes: at children (“/”), descendants (“//”), parent, sib-
lings, (ii) node filters describing which tag to look for (these can
be “all”, “text”, “comment”, etc.), and (iii) predicates that can re-
strict the selected nodes further, for example by referring to values
of additional node features (e.g. class) that should be matched.

For example, the XPath //div/*/a[@class="link_type1"]

selects all nodes that follow a sequence of nodes that can start any-
where in the DOM tree, and has to consist of a node with tag=div

followed by some node whose features are unspecified and is fol-
lowed by a node with tag=a and class=link_type1.

4 The Crawler Synthesis Problem
In this section we formulate the crawler synthesis problem. A
crawler for a website can be divided into two parts: a page crawler,
and a data extractor. The page crawler is responsible for grabbing
the pages of the site that contain relevant information. The data ex-
tractor is responsible for extracting data of interest from each page.

Logical structure of interest Our work considers websites whose
data-containing webpages share the following logical structure: each
webpage describes one main relation, denoted data. As such, data
items are tuples of the data relation. Further, the set Att of attributes
consists of the columns of the data relation.

Note that different concrete layouts can implement this simple
logical structure. For example, if we consider a webpage that ex-
hibits a list of books, then the concrete layout can first group books
by author, and for each author list the books, or it can avoid the par-
tition based on authors. Further, some websites will present each
book in a separate webpage, whereas others will list several books
in the same page. Even for websites that are structured similarly by
the former parameters, the mapping of attribute instances to nodes
in the DOM tree can vary significantly.

Page crawlers A page crawler for a website s is given by a URL
pattern, denoted U(s), which identifies the set of webpages of in-
terest. These are the webpages of the website that contain data of
the relevant kind. We denote by P (s) the set of webpages whose
URL matches U(s).

Data Extractors Recall that we consider webpages where instances
of different attributes are grouped into tuples of some relation, de-
noted data. We are guided by the observation that data in such

webpages is typically stored in subtrees, where each subtree con-
tains instances of all attributes for some data item (i.e., tuple of the
data relation). We refer to the roots of such subtrees as containers:
Containers: A node in the DOM tree whose subtree contains all the
entries of a single data item (i.e., a single tuple of data) is called a
container. Note that any ancestor of a container is also a container.
We therefore also define the notion of a best container to be a con-
tainer such that none of its predecessors is a container. Depending
on the concrete layout of the webpage, a best container might cor-
respond to an element in a list or in another data structure. It might
also be the root of a webpage, if each webpage presents only one
data item.

For example, in the tree D1 depicted in Fig. 3, both of the nodes
selected by //body/.../div[@class="details below-axis"]

are containers, and as such so are their ancestors, including the root.
However, the latter are not best containers since they include strict
subtrees that are also containers.
Attribute nodes: A node in the DOM tree that holds an instance
of an attribute a ∈ Att is called an a-attribute node, or simply an
attribute node when a is clear from the context or does not matter.
Data extractors: A data extractor for the relation data over columns
Att in some website s can be described by a pair (container, f)
where container ∈ Expr is a node descriptor representing con-
tainers, and f : Att ↪→ Expr is a possibly partial function that maps
each attribute name to a node descriptor, with the meaning that this
descriptor represents the attribute nodes relatively to the container
node, i.e., the attribute descriptor considers the container node as
the root. The data extractor is partial if f is partial. If container
is empty, it is interpreted as a node descriptor that extracts the root
of the page. If container is empty and f is undefined for every
attribute, we say that the data extractor is empty.

Examples of data extractors appear in Fig. 5 and Fig. 4.

Crawler synthesis The crawler synthesis problem w.r.t. a set Att
of attributes is defined as follows. Its input is a set S of websites,
where each website s ∈ S is associated with a data extractor, de-
noted E(s), over Att. E(s) might be partial or even empty. The
desired output is a page crawler, along with a complete data extrac-
tor for every s ∈ S.

5 Data Extractor Synthesis
In this section we focus on synthesizing data extractors, as a first
step towards synthesizing crawlers. We temporarily assume that
the page crawler is given, i.e., for each website we have the set
of webpages of interest, and present our approach for synthesizing
data extractors. We will remove this assumption later, and also
address synthesis of the page crawler, using similar techniques.

The input to the data extractor synthesis is therefore a set S of
websites, where each website s ∈ S is associated with a set of
webpages, denoted P (s), and with a data extractor, denoted E(s),
which might be partial or even empty. The goal is to synthesize a
complete data extractor for every s ∈ S. The main challenge in
synthesizing a data extractor is identifying the mapping between
the logical structure of a webpage, and its concrete layout as a
DOM tree. The key to understanding this mapping amounts to
identifying the container nodes in the DOM tree that contain all the
attributes of a single data item (tuple). Once this mapping is learnt,
the next step is to capture it by synthesizing extraction schemes in
the form of XPaths.

The data extractor synthesis algorithm is first described using the
generic notion of node descriptors. In Section 5.2 we then instanti-
ate it for the case where node descriptors are provided by XPaths.

Before we describe our algorithm, we review its main ingredi-



ents. In the following, we use N(p) to denote the set of nodes in
the DOM tree of a webpage p ∈ P (s).

Knowledge base of data across websites Our synthesizer maintains
a knowledge baseO : Att→ 2V which consists of a set of observed
instances for each attribute a ∈ Att. These are instances collected
across different websites from S. They enable the synthesizer to
locate potential a-attribute nodes in webpages for which the data
extractor of a is unspecified.

Data to node mapping per website In addition to the global knowl-
edge base, for each website s ∈ S our synthesizer maintains: (i) a
set N cont(p) ⊆ N(p) of (candidate) container nodes for each web-
page p ∈ P (s), and (ii) a set Na(p) ⊆ N(p) of (candidate) at-
tribute nodes for each webpage p ∈ P (s) and attribute a ∈ Att.

Deriving extraction schemes per website The synthesis algorithm
iteratively updates the container and attribute node sets for each
webpage in P (s), and attempts to generate a data extractor E(s) :
Expr × (Att ↪→ Expr) for s by generating node descriptors for
the set of containers, and for each of the attributes. The extraction
scheme is shared by all webpages of the website. The updates of
the sets and the attempts to generate node descriptors from the sets
are interleaved, as one can affect the other; on the one hand node
descriptors are generated in an attempt to represent the sets; on the
other hand, once descriptors are generated, elements of the sets that
do not conform to them are removed.

While attribute instances are used to identify attribute nodes across
different websites, the synthesis of node descriptors is performed
for each website separately and independently of others (while con-
sidering all of the webpages associated with the website).

5.1 Algorithm

Algorithm 1 presents our data extractor synthesis algorithm. The
algorithm is iterative, where each iteration consists of two phases:

Phase 1: Data extraction for knowledge base extension. Initially,
the sets O(a) of instances of all attributes a ∈ Att are empty. In
each iteration, we use yet un-crawled extraction schemes to extract
attribute nodes in all webpages of all websites and extend the sets
O(a) for every attribute a based on the content of the extracted
nodes. At the first iteration, input extraction schemes are used. In
later iterations, we use newly learnt extraction schemes, generated
in phase 2 of the previous iteration.

Phase 2: Synthesis of data extractors. For every website s ∈ S for
which the extraction scheme is not yet satisfactory, we attempt to
generate an extraction scheme by performing the following steps:

(1) Locating attribute nodes per page: We traverse all webpages
p ∈ P (s) and for each attribute a we use the instances O(a) col-
lected in phase 1 (from this iteration and previous ones) to identify
potential a-attribute nodes in p. Technically, for every p ∈ P (s)
we iterate on all n ∈ N(p) and use the (default or user-specified)
equivalence relation ≡a to decide whether n contains data that
matches the attribute instances inO(a). If so, n is added toNa(p).

(2) Locating container nodes per page: In every webpage p ∈
P (s) we locate potential container nodes, and collect them inN cont(p).
A container is expected to contain instances of all attributes Att.
However, since our knowledge of the attribute instances is incom-
plete, we need to also consider subsets of Att. In each webpage,
we define the “best” set of attributes to be the set of all attributes
whose instances appear in it. Potential containers are nodes whose
subtree contains attribute nodes of the “best” set of attributes, and
no strict subtree contains nodes of the same set of attributes. The
latter ensures that the container is best. Technically, for every node
n ∈ N(p) we compute the set of reachable attributes a ∈ Att
such that an a-attribute node in Na(p) is reachable from n. Nodes

n whose set is best and no other node reachable from n has the
same set of reachable attributes are collected in N cont(p). For each
container node nc ∈ N cont(p) we also maintain its support - the
number of attribute nodes reachable from it.

(3) Generating container descriptor: We consider the concrete
node descriptor of every container node nc ∈ N cont(p) in every
webpage p ∈ P (s). We unify the concrete node descriptors across
all webpages into a single node descriptor, and use it to update
E(s), relying on the observation that containers are typically ele-
ments of some data structure and are therefore accessed similarly.

(4) Filtering attribute nodes based on container descriptor: We
filter the sets N cont(p) of containers in all webpages to keep only
containers that match the unified node descriptor, and accordingly
filter the sets Na(p) of attribute nodes in all webpages to con-
tain only nodes that are reachable from the filtered sets of con-
tainers. This step enables us to automatically distinguish the nodes
we are interested in from others that accidentally contain attribute
instances, without any a-priori knowledge.

(5) Generating attribute descriptors: For each attribute a ∈ Att,
we consider the concrete node descriptors of all the nodes in the
filtered sets Na(p) of all webpages p ∈ P (s), where the concrete
node descriptor of n is computed relatively to the container node
whose subtree contains n. For each attribute a, we find a unified
node descriptor for these concrete node descriptors, and use it to
update E(s). Again, we use the observation that containers are
structured similarly and therefore attribute data within them is ac-
cessed similarly.
Remark. For a successful application of our algorithm, at least
one extraction scheme should be provided for every attribute. Our
approach is also applicable if a user provides a set of annotated
webpages instead of a set of initial extraction expressions.

Section 2 describes a running example of our algorithm.
Node descriptor unification Node descriptors for the container and
attributes are generated by unifying concrete node descriptors of
the nodes in N cont(p) and Na(p) respectively. Roughly speaking,
the purpose of the unification is to derive a node descriptor that
is general enough to describe as many of the concrete node de-
scriptors as possible, but also as concrete as possible in order to
introduce as little noise as possible. “Concreteness” of a node de-
scriptor x is measured by an abstraction score, denoted abs(x).
The node descriptor unification algorithm is parametric in the ab-
straction score. In Section 5.2, we provide a definition of this score
when the node descriptors are given by XPaths.

DEFINITION 5.1. For a setX of concrete node descriptors and
a weight function support that associates each x ∈ X with its sup-
port, the unification problem aims to find a node descriptor xg , s.t.:

1. support({x∈X|JxK⊆JxgK})
support(X)

> δ, i.e., xg captures at least δ of the
total support of the node descriptors in X .

2. abs(xg) is minimal.

In container descriptor unification (step 3), the given node de-
scriptors represent container nodes. The support of each descriptor
represents the number of attribute nodes reachable from the con-
tainer. In attribute descriptors unification (step 5), the given de-
scriptors represent attribute nodes for some attribute, all of which
are reachable from a set of containers of interest. The attribute node
descriptors are relative to the container nodes.

5.2 Implementation using sequential XPaths
In order to complete the description of our data extractor synthe-
sizer, we describe how the ingredients of Algorithm 1 are imple-
mented when node descriptors are given by XPaths. Specifically,
our approach uses sequential XPaths:



Algorithm 1: Data Extractor Synthesizer
Input: set of attributes Att
Input: set of websites S
Input: a map E : S → (Expr× (Att ↪→ Expr)) mapping a website s

to a data extractor E(s) which consists of a (possibly empty)
container descriptor as well as a (possibly partial) mapping of
attributes to node descriptors

O = []
while there is change in O or E do

/* Data extraction phase */
foreach s ∈ S s.t. E(s) is uncrawled do

O = O ∪ ExtractInstances (Att, P (s), E(s), O)
/* Synthesis phase */
foreach s ∈ S s.t. E(s) is incomplete do

/* Locate attribute nodes */
foreach p ∈ P (s) do

foreach a ∈ Att do
Na(p) = FindAttNodes (N(p), a, O(a))

/* Locate container nodes */
foreach p ∈ P (s) do

bestAttSet = {a ∈ Att | Na(p) 6= ∅}
foreach n ∈ N(p) do

reachAtt[p][n] = {a ∈ Att | ∃n′ ∈ reach(n) :
n′ ∈ Na(p)}
support[p][n] = #{n′ ∈ reach(n) | ∃a ∈ Att :
n′ ∈ Na(p)}

N cont(p) = candidates = {n ∈ N(p) |
reachAtt[n] = bestAttSet}

foreach n ∈ candidates do
foreach n′ ∈ children(n) do

if n′ ∈ candidates then
N cont(p) = N cont(p) \ {n}
break

/* Generate container descriptor */
Exprs =
{(relativeExpr(p, emptyExpr, n), support[p][n]) |
p ∈ P (s), n ∈ N cont(p)}
containerExpr = UnifyExpr (Exprs)
FilterAttributeNodes()
/* Generate attribute descriptors */
foreach a ∈ Att do

Exprs =
{(relativeExpr(p, containerExpr, n), 1) | p ∈
P (s), n ∈ Na(p)}
attExpr[a] = UnifyExpr (Exprs)

E(s) = (containerExpr, attExpr)

return E

Sequential XPaths A path π in the DOM tree is a sequence of
nodes n1, . . . , nk, where for every 1 ≤ i < k, there is an edge
from ni to ni+1. Such a path can naturally be encoded using an
XPath XS(π) = x1 . . . xk where each xi starts with “/”. x1 may
start with “//” rather than “/” if π does not necessarily start at the
root of the tree. Further, each xi uses node filters and predicates
to describe the features of ni. Therefore, xi can be described via
equalities f1 = v1, . . . , fm = vm, such that fj ∈ F , where F is
the set of node features used. We consider F = {tag, class, id}
for simplicity, but our approach is not limited to these features. A
feature might be unspecified for ni, in which case no corresponding
equality will be included in xi.

For example, let π be the left most path in D2 (Fig. 3). Then
XS(π) = //body/.../td/div/h1. XS(π) can also be described
as a sequence 〈tag=body〉 . . . 〈tag=td〉〈tag=div〉〈tag=h1〉.

We refer to XPaths of the above form as sequential. The XPaths
that our approach generates as node descriptors are all sequential.

Concrete XPaths Each node n in the DOM tree can be uniquely
described by the unique path, denoted πn, leading from the root to

n. The XPath XS(πn) is a sequential XPath such that JXS(πn)K ⊇
{n}, and JXS(πn)K is minimal (i.e., every other sequential XPath
that also describes n, describes a superset of JXS(πn)K). We there-
fore refer to XS(πn) as the concrete XPath of n, denoted XS(n)
with abuse of notation. (If we include in F the position of a node
among its siblings as an additional node feature, and encode it by
an XPath instruction using sibling predicates then we will have
JXS(πn)K = {n}).
Agreement of sequential XPaths We observe that for sequential
XPaths, checking if a node n matches a node descriptor xg (i.e.
n ∈ JxgK) can be done by checking if the concrete XPath XS(n)
agrees with the XPath xg , where agreement is defined as follows.

DEFINITION 5.2. Let x = x1 . . . xk and xg = xg1 . . . x
g
m be

sequential XPaths. The instruction xi agrees with instruction xgi
if whenever some feature is specified in xi, it either has the same
value in xgi or it is unspecified in xgi . The XPath x agrees with the
XPath xg if m ≤ k, and for every i ≤ m, xi agrees with xgi .

For example, //body/.../td/div[id=name1]/h1 agrees with
both //body/.../td/div/h1, and //body/.../td/div.
Node descriptor unification via XPath unification We now de-
scribe our solution to the node descriptor unification problem in the
setting of sequential XPaths. We first define the abstraction score:
Abstraction score For a sequential XPath instruction xi we define
spec(xi) to be the subset of features whose value is specified in xi,
and unspec(xi) = F \ spec(xi) is the set of unspecified features
in xi. We define the abstraction score of xi to be the number of
features in unspec(xi), that is, abs(xi) = |unspec(xi)|.

For a sequential XPath x = x1 . . . xk, we define abs(x) to be
the sum of abs(xi).
Greedy algorithm for unification Algorithm 2 presents our unifica-
tion algorithm. We use the observation that for sequential XPaths,
the condition JxK ⊆ JxgK that appears in item 1 of the unifica-
tion problem (see Definition 5.1) can be reduced to checking if the
XPath x agrees with the XPath xg .

Let X be a weighted set of sequential XPaths, with a weight
function support that associates each XPath in X with its support.
Let TS = support(X) denote the total support of XPaths in X .
The unification algorithm selects k to be the length of the longest
XPath in X . It then constructs a unified XPath xg = xg1, . . . , x

g
m

top down, from i = 1 to k (possibly stopping at i = m < k).
Intuitively, in each step the algorithm tries to select the most “con-
crete” instruction whose support is high enough. Note that there
is a tradeoff between the high-support requirement and the high-
concreteness requirement. We use the threshold as a way to balance
these measures.

At iteration i of the algorithm, Xi−1 is the restriction of X to
the XPaths whose prefix agrees with the prefix xg1, . . . , x

g
i−1 of xg

computed so far (Initially, X0 = X). We inspect the i’th instruc-
tions of all XPaths in Xi−1. The corresponding set of instructions
is denoted by Ii = {xi | x ∈ Xi−1}. The support of an instruction
xB w.r.t. Ii is support({x ∈ Xi−1 | xi agrees with xB}).

To select the most “concrete” instruction whose support is high
enough, we consider a predefined order on sets of feature-value
pairs, where sets that are considered more “concrete” (i.e., more
“specified”) precede sets considered more “abstract”. Technically,
we consider only feature-value sets where each feature has a unique
value. The order on such sets used in the algorithm is defined such
that if |B1| > |B2| then B1 precedes B2. In particular, we make
sure that sets where all features are specified are first in that order.

For every set B of feature-value pairs, ordered by the predefined
order, we consider the instruction xB that is specified exactly on



the features in B, as defined by B. If its support exceeds δ, we set
xgi to xB and Xi to {x ∈ Xi−1 | xi agrees with xB}. Otherwise,
xB is not yet satisfactory and the search continues with the next B.
There is always a B for which the support of the xB exceeds the
threshold, for instance, the last set B is always the empty set with
xB = /*, which agrees with all the concrete XPaths in Xi−1 .

If at some iteration Ii = ∅, i.e. the XPaths in Xi−1 are all of
length < i and therefore there is no “next” instruction to discover,
the algorithm terminates. Otherwise, it terminates when i = k.

EXAMPLE 1. Given the following concrete XPaths as an input:

cx1 = /div[class=“title”]/span/a[id=“t1”]

cx2 = /div[class=“title”]/span/a[id=“t2”]

cx3 = /div[class=“note”]/span/a[id=“n1”]

The unification starts with X0 = {cx1, cx2, cx3}, and i = 1. To
select xg1 , recall that the algorithm first considers the most specific
feature-value sets (in order to find the most specific instruction).
In our example it starts from B1 = {tag=div, class=note}
for which xB1 = /div[class=“note”]. However, cx3 is the
only XPath in X0 which agrees with xB1 . Therefore it has sup-
port of 1/3. We use a threshold of δ = 1/2. Thus, the sup-
port of xB1 is insufficient. The algorithm skips to the next op-
tion, obtaining xB2 = /div[class=“title”]. This instruc-
tion is as specific as xB1 and has a sufficient support of 2/3 (it
agrees with cx1 and cx2). Therefore, for i = 1, the algorithm
selects xg1 = xB2 and X1 = {cx1, cx2}. For i = 2, the algo-
rithm selects xg2 = /span as the most specific instruction, which
also has support of 2/2 (both cx1 and cx3 from X1 agree with
it). For i = 3, the algorithm selects xg3 = /a as none of the
more specific instructions (/a[id=“t1”] or /a[id=“t2”]) has
a support greater than δ = 1/2. The resulting unified XPath is
x = /div[class="title"]/span/a.

Algorithm 2: Top-Down XPath Unification
Input: set X of sequential XPaths
Input: support function support : X → N
Input: threshold δ
TS = support(X)
k = maxx∈X |x|
X0 = X
foreach i = 1, . . . , k do

Ii = {xi | x ∈ Xi−1}
if Ii = ∅ then

i = i− 1
break

foreach B ⊆ F in decreasing order of |B| do
supportB = FindSupport(xB , Xi−1, i, support)
if supportB > δ · TS then

xgi = xB
Xi = {x ∈ Xi−1 | xi agrees with xB}
break

return xg1, . . . , x
g
i

6 Crawler Synthesis
In this section we complete the description of our crawler synthe-
sizer. To do so, we describe the synthesis of a page crawler for each
website s. Recall that a page crawler corresponds to a URL pattern
U(s) which defines the webpages of interest. The synthesis of a
page crawler is intertwined with the data extractor synthesis, and
uses similar unification techniques to generate the URL pattern.

Initialization We assume that each website s ∈ S is given by a
“main” webpage pmain(s). Initially, the set P (s) of webpages of s
is the set of all webpages obtained by following links in pmain(s)
and recursively following links in the resulting pages, where the
traversed links are selected based on some heuristic function which
determines which links are more likely to lead to relevant pages.

Iterations We apply the data extractor synthesis algorithm of Sec-
tion 5 using the sets P (s). At the end of phase 2 of each iteration,
we update U(s) using the steps described below. At the beginning
of phase 1 of the subsequent iteration we then update P (s) to the
set of webpages whose URLs conform with U(s).

(6) Filtering webpage sets: Based on the observation that rel-
evant webpages of a website s have a similar structure, we keep
in P (s) only webpages that contain container and attribute nodes
that match the generated E(s) and are reachable from pmain(s)
via such webpages.

(7) Generating URL patterns: For each webpage p ∈ P (s) we
consider its URL. We unify the URLs into U(s) by a variation of
Algorithm 2 which views a URL as a sequence of instructions, sim-
ilarly to a sequential XPath.

7 Evaluation
In this section we evaluate the effectiveness of our approach. We
used it to synthesize data extracting web-crawlers for real-world
websites containing structured data of different categories. Our
experiments focus on two different aspects: (i) the ability to suc-
cessfully synthesize web-crawlers, and (ii) the performance of the
resulting web crawlers.

7.1 Experimental Settings

We have implemented our tool in C#. All experiments ran on a ma-
chine with a quad core CPU and 32GB memory. Our experiments
were run on 30 different websites, related to nine different cat-
egories: books, TVs, conferences, universities, cameras, phones,
movies, songs and hotels. For each category we selected a group
of 3-4 known sites, which appear in the first page of Google search
results.

The sites in each category have a different structure, but they
share at least some of their instances, which makes our approach
applicable. The complexity of the data extracted from different cat-
egories is also different. For instance a movie has four attributes:
title, genre, director and list of actors. For a book, the set of at-
tributes consists of title, author and price, while the attribute set
of a camera consists of the name and price only. In each category
we used one manually written crawler and automatically synthe-
sized the others (for the books category we also experimented with
3 partial extraction schemes, one for each attribute). To synthesize
the web crawlers, our tool processed over 12, 000 webpages from
the 30 different sites.

To evaluate the effectiveness of our tool we consider 4 aspects of
synthesized crawlers: (i) Crawling scheme completeness, (ii) URL
filtering, (iii) Container extraction, and (iv) Attributes extraction.

7.2 Experiments and Results

Crawling Scheme Completeness A complete crawling scheme de-
fines extraction queries for all of the data attributes. The complete-
ness of the synthesized crawling schemes is an indicator for the
success of our approach in synthesizing crawlers. To measure com-
pleteness, we calculated for each category the average number of
attributes covered by the schemes, divided by the number of at-
tributes of the category. The results are reported in Fig. 6 (left).
The results show that the resulting extraction schemes are mostly
complete, with a few missing attribute extraction queries.



Figure 6: Results: Crawling scheme completeness (left), URL filtering (middle) and Attribute extraction (right) for each category.

Figure 7: Attribute extraction precision and recall, and crawl-
ing scheme completeness, as a function of the threshold of Jac-
card similarity used to define equivalence between instances.

URL Filtering The ability to locate pages containing data is an
important aspect of a crawler’s performance. To evaluate the URL
filtering performance of the synthesized crawlers, we measure the
recall and precision of the synthesized URL pattern for each site:

recall =
|Rel ∩ Sol|
|Rel| precision =

|Rel ∩ Sol|
|Sol| (1)

To do so, we have manually generated two sets of URLs for each
site: one containing URLs for pages that contain relevant data,
comprising the Rel set (ground truth), and another, denoted Irr,
contains a mixture of irrelevant URLs from the same site. Sol con-
tains the URLs from Rel ∪ Irr that match the synthesized URL
pattern for the site (i.e., the URLs accepted by the synthesised URL
pattern). A good performing URL filtering pattern should match all
the URLs from Rel and should not match any from Irr. The av-
erage recall and precision scores of the sites of each category are
calculated and reported in Fig. 6 (middle).

Container Extraction To check the correctness of the synthesized
container extraction query, we have manually reviewed the result-
ing container XPaths against the HTML sources of the relevant
webpages for each site, to verify that each extracted container con-
tains exactly one data item. We found that the containers always
contained no more than one item. However, in a few cameras and
songs websites, the container query was too specific and did not
extract some of the containers (this happened in tables containing
class=“odd” in some rows and class=“even” in others), which af-
fected the recall scores of attribute extraction.

Attributes Extraction We calculate the recall and precision (see
equation (1)) of the extraction query for each attribute. Techni-

cally, for each category of sites, we have manually written extrac-
tion queries for each attribute in every one of the category related
sites. For each attribute a, we used these extraction queries to ex-
tract the instances of a from a set of sample pages from each site.
The extracted instances are collected in Rel. We have also applied
the synthesized extraction queries (as a concatenation of the con-
tainer XPath and attribute XPath) to extract instances of a from the
same pages into Sol. For each site, the precision and recall are cal-
culated according to equation (1). The average (over sites of the
same category) recall and precision scores of all attributes of each
category are reported in Fig. 6 (right).

Equivalence Relation To evaluate the effect of the threshold used
in the equivalence relation, ≡a, on the synthesized crawlers, we
have measured the average completeness, as well as the average
recall and precision scores of attribute extraction as a function of
the threshold. The results appear in Fig. 7.
Remark. The reported attribute extraction recalls in Fig. 6 and
Fig. 7 are computed based on queries for which synthesis suc-
ceeded (missing queries affect only completeness, and not recall).

7.3 Discussion

The completeness of the synthesized extraction schemes is highly
dependent upon the ability to identify instances in pages of some
site by comparison to instances gathered from other sites. For most
categories, completeness is high. For the conferences category,
however, completeness is low. This is due to the use of acronyms in
conference names (e.g., ICSE) in some sites vs. full names (e.g., In-
ternational Conference on Software Engineering) in others, which
makes it hard for our syntax-based equivalence relation to identify
matches. This could be improved by using semantic equivalence
relations (such as ESA [12] or W2V [33]).

As for the quality of the resulting extraction schemes and URL
filtering patterns, most of the categories have perfect recall (Fig. 6).
However, some have a slightly lower recall due to our attempt to
keep the synthesized XPaths (or regular expressions, for URL fil-
tering) as concrete as possible while having majority agreement.
This design choice makes our method tolerant to small noises in
the identified data instances, and prevents such noises from caus-
ing drifting, without negative examples. Yet, in some cases, the
resulting XPaths are too specific and result in a sub-optimal recall.

For precision, most categories have good scores, while a few
have lower scores. Loss of precision can be attributed to the majority-
based unification and the lack of negative examples. For the books
category, for instance, the synthesized extraction XPath of price for
some sites is too general, since they list multiple price instances
(original price, discount amount, and new price). All are listed in



the same “parent container” with the author and book title, and are
therefore not filtered by the container, hence affecting XPath unifi-
cation. This could be improved with user guidance.

The results in Fig. 7 reflect the tradeoff between precision and
crawling scheme completeness. A more strict equivalence relation
(with higher threshold) leads to a better precision but has negative
effect on the scheme completeness, whereas the use of a forgiv-
ing equivalence relation (with lower threshold) severely affects the
precision. We use a threshold of 0.5 as a balanced threshold value.
According to our findings, the attribute queries suffer from a low
recall for both low and high threshold values. In low threshold,
it is due to wrong queries, that extract wrong nodes (e.g., menu
nodes), without including attribute nodes. For higher threshold val-
ues, the tool identified less instances of attribute nodes (sometimes
only one), leading to a lower quality generalization.

Real-World Use Case We used our crawler synthesis process as
a basis for data extraction for several product reviews websites.
For instance, tvexp.com, weppir.com, camexp.com and phonesum.
com extract product names and specifications (specs) using our ap-
proach. We manually added another layer of specs scoring, and
created comparison sites for product specs. These websites have a
continually updated database with over 20,000 products.

8 Related Work
In this section, we briefly survey closely-related work. While there
has been a lot of past work on various aspects of mining and data
extraction, our technique has the following unique combination of
features: (i) works across multiple websites, (ii) synthesizes both
the extraction XPath queries, and the URL pattern, (iii) is auto-
matic and does not require user interaction, (iv) works with only
positive examples, (v) does not require an external database, and
(vi) synthesizes a working crawler.

Data Mining and Wrapper Induction Our work is related to data
mining and wrapper induction. In contrast to supervised techniques
(e.g., [24, 25, 29, 5, 16]), our approach only requires an initial
crawler (or partial crawling scheme) and requires no tagged exam-
ples. FlashExtract [25] allows end-users to give examples via an
interaction model to extract various fields and to link them using
special constructs. It then applies an inductive synthesis algorithm
to synthesize the intended data extraction program from the given
examples. In contrast, our starting point is a crawler for one (or
more) sites, which we then extrapolate from. Further, our tech-
nique only requires positive examples (obtained by bootstrapping
our knowledge base by crawling other sites).

Unsupervised extraction techniques [2, 3, 8, 32, 31, 34, 40, 36]
have been proposed. Several works [3, 31, 2, 10, 38, 27, 37] pro-
pose methods that use repeated pattern mining to discover data
records, while [34, 40] use tree-edit distance as the basis for record
recognition and extraction in a single given page. These methods
require manual annotation of the extracted data or rely on knowl-
edge bases [14, 20]. Roadrunner [8] uses similarities and differ-
ences between webpages to discover data extraction pattern. Sim-
ilarities are used to cluster similar pages together and dissimilari-
ties between pages in the same cluster are used to identify relevant
structures. Other information extraction techniques rely on textual,
or use visual features of the document [41, 30] for data extraction.
ClustVX [15] renders the webpage in contemporary web browser,
for processing all visual styling information. Visual and structural
features are then used as similarity metric to cluster webpage ele-
ments. Tag paths of the clustered webpages are then used to de-
rive extraction rules. In contrast, our approach does not use visual
styling, but relies on similar content between the different sites.

HAO et al. [18] present a method for data extraction from a group
of sites. Their method is based on a classifier that is trained on a
seed site using a set of predefined feature types. The classifier is
then used as a base for identification and extraction of attribute in-
stances in unseen sites. In contrast, our goal is to synthesize XPaths
that are human-readable, editable, and efficient. Further, with the
lack of an attribute grouping mechanism (such as our notion of con-
tainer), the method cannot handle pages with multiple data items.

Program Synthesis Several works on automatic synthesis of pro-
grams [22, 13, 25, 17] were recently proposed, aiming for automat-
ing repetitive programming tasks. Programming by example, for
instance, is a technique used in [22, 25] for synthesizing a program
by asking the user to demonstrate actions on concrete examples. In-
spired by these works, our approach automatically synthesizes data
extracting web crawlers. However, we require no user interaction.

Semantic Annotation Many works in this area attempt to automat-
ically annotate webpages with semantic meta-data.

Seeker [11] is a platform for large-scale text analysis, and an
application written on the platform called SemTag that performs
automated semantic tagging of large corpora. Ciravegna et al. [6]
propose a methodology based on adaptive information extraction
and implement it in a tool called Armadillo [4]. The learning pro-
cess is seeded by a user defined lexicon or an external data source.
In contrast to these works, our approach does not require external
knowledge base and works by bootstrapping its knowledge base.

Other Aspects of Web Crawling There are a lot of works dealing
with different aspects of web crawlers. Jiang et al. [23] and Jung
et al. [1] deal with deep-web related issues, like the problem of
discovering webpages that cannot be reached by traditional web
crawlers mostly because they are results of a query submitted to
a dynamic form and they are not reachable via direct links from
other pages. Some other works like [35, 39] address the problem of
efficient navigation of website pages to reach pages of specific type
by training a decision model and using it do decide which links to
follow in each step. Our paper focuses on the different problem of
data extraction, and is complementary to these techniques.

9 Conclusion
We presented an automatic synthesis of data extracting web crawlers
by extrapolating existing crawlers for the same category of data
from other websites. Our technique relies only on data overlaps
between the websites and not on their concrete representation. As
such we manage to handle significantly different websites. Techni-
cally, we automatically label data in one site based on others and
synthesize a crawler from the labeled data. Unlike techniques that
synthesize crawlers from user provided annotated data, we cannot
assume that all annotations are correct (hence some of the examples
might be false positives), and we cannot assume that unannotated
data is noise (hence we have no negative examples). We overcome
these difficulties by a notion of containers that filters the labeling.

We have implemented our approach and used it to automatically
synthesize 30 crawlers for websites in nine different product cat-
egories. We used the synthesized crawlers to crawl more than
12, 000 webpages over all categories. In addition, we used our
method to build crawlers for real product reviews websites.
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